1302

Ready Coupling of Acid Chlorides with Tetra-alkyl-lead Derivatives Catalysed by Palladium

Jun-ichi Yamada and Yoshinori Yamamoto*

Department of Chemistry, Faculty of Science, Tohoku University, Sendai 980, Japan

Palladium-catalysed coupling of acid chlorides with tetra-alkyl-lead derivatives gives the corresponding ketones in high yields under mild conditions.

The palladium-catalysed coupling reactions between organotin derivatives and organic halides have been of great interest in modern synthetic organic chemistry.¹ Unfortunately, however, the reaction between tetra-alkyltin derivatives and acid chlorides is relatively slow, and requires higher temperatures. In particular, the reaction of tetra-alkyltin derivatives bearing long alkyl chains is sluggish. We report here that the palladium-catalysed reaction of acid chlorides with tetra-alkyl-

Table 1. Coupling of acid chlorides with tetra-alkyl-lead reagents.^a

Entry	RCOCI	R²₄Pb (equiv.)	Method ^b	Reaction time/h	Yield of ketone R ¹ COR ² (%)
1	PhCOCl	Bu₄Pb (1.3)	А	12°	99
2	PhCOCl	Bu ₄ Pb (0.6)	Α	6	78
3	PhCOCl	$Bu_4Pb(0.3)$	Α	12°	37
4	PhCOCl	Bu ₄ Pb (0.6)	В	6	99
5	PhCOCl	Bu ₄ Pb (0.6)	С	6	81
6	PhCOCl	$Bu_4Pb(0.3)$	С	12°	43
7	PhCOCl	Et ₄ Pb (0.6)	Α	3	84
8	Me[CH ₂] ₆ COCl	$Bu_4Pb(0.6)$	Α	9	60
9	Me[CH ₂] ₆ COCl	$Bu_4Pb(0.6)$	В	16	49ª
10	Me[CH ₂] ₆ COCl	$Bu_4Pb(0.6)$	С	12	50 ^d
11	Me[CH ₂] ₃ CHEtCOCl	$Bu_4Pb(0.6)$	Α	4	72
12	PhCH=CHCOCl	$Bu_4Pb(0.6)$	Α	7	65
13	PhCH=CHCOCl	$Bu_4Pb(0.6)$	В	2	82

^a All reactions were carried out on 1 mmol scale under argon. ^b Method A: $Pd(PPh_3)_4$ (1 mol %), THF, 65 °C. Method B: $Pd(PPh_3)_4$ (1 mol %), C_6H_6 , reflux. Method C: $PhCH_2Pd(PPh_3)_2Cl$ (1 mol %), $CHCl_3$, reflux. ^c The reaction time was not optimized. ^d The isolated ketone contained small amounts of impurities.

lead derivatives proceeds smoothly and rapidly under milder conditions than the reaction with tetra-alkyltin derivatives [equation (1)]. The results are summarized in Table 1.

$$R^{1}COCl + R^{2}_{4}Pb \xrightarrow{}{Pd^{0}} R^{1}COR^{2} + R^{2}_{3}PbCl \qquad (1)$$

$$2R_{3}^{2}PbCl \rightleftharpoons R_{4}^{2}Pb + R_{2}^{2}PbCl_{2}$$
⁽²⁾

Butyl transfer from Bu_4Pb to benzoyl chloride in the presence of $Pd(Ph_3P)_4$ took place rapidly and smoothly in comparison with transfer from Bu_4Sn (entries 1—6), and the desired ketone was obtained in essentially quantitative yield (entries 1 and 4). Use of only 0.6 equiv. of R^2_4Pb also gave the ketone in high yields (entries 2, 4, 5, and 7—13). This presumably reflects the ready disproportionation of R^2_3PbCl [equation (2)].² Use of 0.3 equiv. of R_4Pb resulted in low yields (entries 3 and 6). Thus two alkyl groups of R^2_4Pb can be utilized effectively for the coupling reaction. This is in marked contrast to the reaction of R_4Sn in which only one group is transferred.³ The coupling reaction was also applicable to aliphatic acid chlorides and to an α,β -unsaturated derivative (entries 8—13). Needless to say, the reaction did not occur without palladium catalyst.[†]

The present finding not only provides a new route to ketones from acid chlorides, but also opens a door to new synthetic applications of organolead compounds.⁵

Received, 14th April 1987; Com. 501

References

- (a) M. Kosugi, K. Sasazawa, Y. Shimizu, and T. Migita, Chem. Lett., 1977, 1423; (b) D. Milstein and J. K. Stille, J. Org. Chem., 1979, 44, 1613; (c) For a review, see J. K. Stille, Angew. Chem., Int. Ed. Engl., 1986, 25, 508.
- 2 P. R. Austin, J. Am. Chem. Soc., 1932, 54, 3287.
- 3 J. W. Labadie, D. Tueting, and J. K. Stille, J. Org. Chem., 1983, 48, 4634.
- 4 A. G. Davis and R. J. Puddephatt, J. Chem. Soc. (C), 1968, 317.
- 5 Y. Yamamoto and J. Yamada, J. Am. Chem. Soc., 1987, 109, 4395.

[†] Trialkylalkynyl-lead derivatives react with acetyl chloride without palladium catalysts to produce alkynyl methyl ketones.⁴